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This article describes how a quantitative analysis of the dominant source of

relaxation in ruby spin systems is used to make predictions of key maser amplifier

parameters. The spin-lattice Hamiltonian which describes the interaction of the

electron spins with the thermal vibrations of the surrounding lattice is obtained

from the literature. Taking into account the vibrational anisotropy of ruby, Fermi's

rule is used to calculate the spin transition rates between the maser energy levels.

The spin population rate equations are solved for the spin transition relaxation

times, and a comparison with previous calculations is made. Predictions of ruby

gain, inversion ratio, and noise temperature as a function of physical temperature

are made for 8.4-GHz and 32-GHz maser pumping schemes. The theory predicts

that ruby oriented at 90 deg will have approximately 50 percent higher gain in dB

and slightly lower noise temperature than a 54.7-deg ruby at 32 GHz (assuming

pump saturation). A specific calculation relating pump power to inversion ratio is

given for a single channel of the 32-GHz reflected wave maser.

I. Introduction

Ruby has been the active material employed in all

DSN masers [1], and is again being considered for use at

32 GHz. In order to be able to predict the best operating

point (i.e., crystal orientation, magnetic field intensity, and

pumping scheme) available at a particular frequency and

temperature, it is necessary to understand the relaxation

behavior of the spins.

The spins in ruby are Cr 3+ ions introduced as an im-

purity in the sapphire lattice. Because the spins are lo-

calized in the lattice, they obey classical particle statistics

and have a Boltzmann distribution of energies at ther-

mal equilibrium. To achieve maser operation, a spin pop-

ulation inversion is created by pumping the appropriate

transitions at their resonance frequencies [2]. The incom-

ing signal is then amplified by inducing stimulated emis-

sion between the signal transition levels. The amount of

pump power required to maintain the population inver-

sion depends on the rate at which the spins relax back to

lower levels. With a knowledge of the relaxation rates, one

may compute the corresponding inversion ratio, gain, and

noise temperature of the ruby. Conduction losses would,

of course, be accounted for separately.
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The dominant spin relaxation mechanism in ruby at

microwave frequencies and liquid He temperatures is due

to interaction of the spins with the lattice, the so-called

Kronig-Van Vleck mechanism [13]. Thermal vibrations

of the Al_O3 lattice induce spin transitions via spin-orbit

coupling. A so-called magneto-elastic tensor which char-
acterizes the coupling of the Cr 3+ ions to the lattice has

been measured at 10 GHz [3]. Assuming the "direct" pro-
cess of relaxation in which a single quantum of energy

is exchanged between the spins and the lattice, Donoho

[4] calculated the spin relaxation rates for an isolated spin
based on the measured value of the magneto-elastic tensor.

Based largely on Donoho's work, the calculation of relax-
ation rates was performed at 32 GHz for maser pumping

schemes of interest.

As a means of comparing theory with experiment,
Donoho also calculated the relaxation times associated

with the saturation and recovery of a pair of spin levels.

The calculation is performed by solving a linear set of first-

order differential equations involving the level populations
to determine the characteristic times associated with the

return to equilibrium. The relaxation times depend on

field strength, crystal orientation, and temperature, and

are readily compared with measured values. Varying de-

grees of agreement between theory and experiment have
been reported in the literature [5]. Because of the depen-
dence of the measured relaxation times on crystal growth

procedure, we are having measurements performed at the

University of California, San Diego on Union Carbide ruby

at frequencies of 9 GHz and 35 GHz. Note that the mea-

surement of relaxation times is important not only in veri-

fying the theory, but also because shorter relaxation times

generally imply greater pump power requirements.

In addition to computing relaxation times, the present

work computes the resulting spin populations for various

amounts of pump power. Knowing the spin populations,

all parameters of interest, such as ruby gain and noise

temperature, may be determined. Hence, this theory pro-

vides a means of comparing in detail the different operat-

ing schemes for a 32-GHz maser at various temperatures.

Experiments are being planned to measure inversion ra-

tio, gain, and noise temperature or ruby at the 32-GHz

operating points of interest.

It should be pointed out that a significant approxima-

tion has been made in assuming that the lattice interacts

with an isolated spin. The Cr concentration is actually

dilute (,-, 0.05 percent), but if the ions cluster or if signif-

icant amounts of magnetic impurities or crystal imperfec-

tions are present, the relaxation behavior of the spins can

be greatly modified [5]. In this work it is assumed that

spin-spin interactions do not significantly affect the spin
relaxation rates, but experiment may prove this to be a

poor assumption.

This article proceeds as follows. Section II discusses

the spin and spin-lattice Hamiltonians for ruby. Section III

outlines the calculation of the spin-lattice transition rate.
Section IV describes the solution of the time-dependent

rate equations for the relaxation times and compares them

with Donoho's [4] results. Section V discusses the calcula-

tion of inversion ratio, gain, pump power, and noise tem-

perature. Conclusions are presented in Section VI.

II. Spin and Spin-Lattice Harniltonians

A. Spin Harniltonian

The spin Hamiltonian formalism [6, 13] is a semiem-

pirical technique for describing the interaction of the elec-

tron spin of a paramagnetic ion with the static crystal

electric field and applied magnetic field. Evaluation of the
spin Hamiltonian yields values for the spin energy levels

and rates of spin transition between levels due to the ap-

plication of an RF magnetic field. The spin-lattice Hamil-
tonian is also a semiempirical formalism, but it describes

the interaction of the paramagnetic ion spin with the time-

varying crystal electric field associated with thermal lattice
vibrations.

The spin Hamiltonian for ruby is discussed in [8], but

a brief review is given below for completeness. The spin
Hamiltonians for several other potential maser materials

have been evaluated recently [9].

The form of the spin Hamiltonian often reflects the

symmetry of the surrounding crystal field. In ruby, Cr 3+

ions enter the A1203 lattice substitutionally for A13+.

Each Al/Cr ion is surrounded by a distorted octahedron
of 02- ions such that the local site symmetry is C3. The

trigonal axis of the site, which coincides with the c axis of

the ruby, is labeled the z axis, as shown in Fig. 1. The

spin Hamiltonian for ruby is [10]

H,=g_B.S+D(S_- 5) ,1)

where the spectroscopic splitting factor is approximately

isotropic with the value g -- 1.98, fl is the Bohr magneton,
is the applied dc magnetic field, and the crystal field

splitting factor is D -- -5.73 GHz. S_ is the z component

of the vector or spin operators,
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(2)

where the Si are given in standard texts on quantum me-

chanics [11].

The first term in Eq. (1) is the Zeeman interaction

and the second term represents the interaction of the spin

with the static crystal electric field via spin-orbit coupling.

Because the ground-state orbital is a singlet, the orbital

angular momentum is quenched [13]. Hence, the crystal

field splitting may be said to arise from admixture of the
spin with the orbital angular momentum of higher-lying

orbitals. Applying second-order perturbation theory, one

obtains a splitting term that is second order in spin, as

shown by Eq. (1). Detailed accounts of the derivation

of the form of Eq. (1) based on the equivalent operator
method are given elsewhere [8]. The parameter D is deter-

mined empirically, as a first-principles calculation is very

difficult, perhaps because the bonding is partly ionic and

partly covalent.

Cr is a transition metal element with the electronic

configuration 3d54,1. The Cr 3+ ion has the configuration

3d 3. For the free ion, L = 3 and S = 3/2, so the term

is 4F3/2. A qualitative and simplified energy splitting dia-
gram for Cr in sapphire showing the sequence of degener-

acy removing perturbations is given in Fig. 2 [13].

To determine the spin energy levels, each spin state is

expressed as a sum of pure spin states, that is, quantum

states in which spin-orbit coupling is neglected, as follows:

and isofrequency plots of B versus 0 for ruby are given by

Schultz-duBois [10].

An important point concerning the mixing of pure

spin states should be made. For pure spin states, the selec-

tion rule AM = 4-1 applies, where M is the spin quantum

number equal to 3/2, 1/2, -1/2, or -3/2 for S = 3/2.

When spin-orbit interactions are included for a Cr 3+ ion

in a crystal, the resulting spin quantum states are a mix-
ture of pure spin states, and as such cannot be labeled by

a single value of M. Therefore, the AM = 4-1 rule can-
not be strictly applied. This mixing of pure spin states is

essential to continuous wave (CW) maser operation.

B. Spin-Lattice HamUtonian

So far, the time-varying crystal field arising from lat-

tice vibrations has been neglected. To describe the effect
lattice vibrations have on the spin states, it is convenient

to define a spin-lattice Hamiltonian, HSL (derivations of

the spin-lattice Hamiltonian are given in [14, 15]. Since

the lattice vibrations may cause a slightly anisotropic per-

turbation of the crystal field, a reasonable form for HSL

is [4]

HaL = E dij&Sj, i,j = z,y,z (6)
i1

where Idlil << IDI. For the one-phonon (direct) process of

energy exchange, Van Vleck [16] assumed that Hst. was
linear in strain. The d tensor may then be expressed as

I',>=°, +"I+1>+"I-1>+

The eigenvalue equation

H, I = E, I (4)

is solved for the energies Ei and eigenvectors, I@i). Know-

ing the eigenstates, one may calculate Wiy, the rate of spin

transitions stimulated by the time-varying magnetic field

H1 between levels i and j, from Fermi's rule [2]:

1 2

W_i = -_"r gi.i(f)l < _ilH_- Sl@j > 12 (5)

where 7 = gBpo/h and g_j(f) is the line shape function

as a function of frequency. Plots of energy levels versus B

dij = E Gijktekt, k, l = z,y, z (7)
kl

where G is a fourth-rank tensor having many of the sym-

metry properties of the classical elastic stiffness tensor re-

lating stress and strain in a material. The tensor e is the

classical strain given by

l(Ouj: Ou,_
= \ + / (8)

where uk is the displacement of atoms in the direction zk.

The above form of HSL neglects spin-spin interactions.

Calculation of the magneto-elastic-tensor G is of the

same order of difficulty as calculation of the spin Hamil-

tonian parameter D. Therefore, G is determined exper-

imentally. In [3] G was measured by applying a known
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uniaxial stress to a ruby crystal and observing the change

in the EPR. spectrum. The spin-lattice Hamiltonian given

by Eqs. (6) and (7) is treated as a static perturbation to the

energy levels computed from the spin Hamiltonian. The

measurements were performed at 10.1 GHz at room tem-

perature. Line shifts were in the range of 10 to 50 Gauss

when the crystals were strained. Five crystal samples were

employed, each having a different stress axis. The compo-

nents of G were obtained by least-squares analysis of the

data. The Cr concentration of the samples was thought to

be _ 0.05 percent. At this concentration, spin-spin inter-

actions may have a non-negligible effect on the spectra, so

the G tensor values could be somewhat in error; however,

this possibility has not been investigated.

The number of independent components in G can be

reduced by symmetry arguments. The form of a fourth-

rank tensor with Ca symmetry is given in [17], and is shown

to have twelve independent components. Choosing trace

(HsL) = 0, which shifts the corresponding energy lev-

els by an insignificant constant, reduces the number of

independent components to ten. The G tensor satisfies

Gijm = Gjim = Gijtk, and so may be written in Voigt

notation by defining the indices 1 = xx, 2 = yy, 3 = zz,

4 = yz, 5 = xz, 6 = xy. In Voigt notation G has the form

e =

Glx Ga2 -G33/2 Gx4 -G2_ G16

G12 Gll -G33/2 -G14 G2_ -G16

-(Gll -k- G12) -(Glx -k- G12) G33 0 0 0

G41 -G41 0 G44 G45 G52

_G52 G52 0 -G45 G44 G41

-G16 G16 0 G25 G14 I(Gll - G12)

(9)

The G values (in GHz) used in [4] and in this work are the

following:

Gll = 124.6 G41 = -15.0

G12 = -35.8 G25 = 45.0

G33 = 181.2 G52 = 45.0

G44 = 54.0 G16 = 0

G14 -- -15.0 G45 = 0

The factor of h2 from the SiSj term is absorbed into the
G values.

For interactions with the A1203 lattice, the Cr 3+ ions

can be considered to occupy two inequivalent sites, as dis-

cussed in [3]. These sites are related by a 2-fold rotation
about the x axis. For the two sites all the elements of

G have the same magnitude, but G25, G52, G16, and G45

have opposite signs. In [4] and in this work only one Cr

site, specified by the elements of G given above, is ac-

counted for. Computer experiments have shown that the

second site does not lead to significantly different relax-
ation times or inversion ratios.

The tensor G characterizes the effect a given strain
has on the EPR spectrum. To relate G to the thermal lat-
tice vibrations one must know the strain associated with a

given lattice mode and also the number of phonons present

(i.e., the phonon occupation number). Since the phonon

wavelengths of interest are ,,_ 10 -4 cm (for a sound veloc-

ity ,,_ 106 cm/sec), the atoms may be assumed to undergo

displacements of equal amplitude in any unit cell. (This is

an approximation since the different mass ions would un-

dergo slightly different displacements, thus modifying the

local crystal field.) Then, for phonons of wavevector k and

polarization vector _p, the displacement may be written as

°('): (lO)

where M is the crystal mass, w is the angular frequency,

and a and a+ are the phonon annihilation and creation op-

erators. The phonon operators arise from an analogy with
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thequantumharmonicoscillator,asdiscussedinanysolid
statephysicstext [18].Theyhavethefollowingproperties:

wherenk,p is the phonon occupation number for the state
k,p, and where subscript k is the mode wavevector and p

is the mode polarization (two transverse and one longitu-

dinal). From Eqs. (8) and (10), the strain becomes

h _1/2

eij= \'8"M'ww] (a+,p-a-k'P)(eP'ikJ+epjki) ei''e (13)

where i, j = x, y, z.

III. The Spin-Lattice Transition Rate

In determining the G tensor, the spin-lattice Itamil-

tonian is static since the applied strain is static. How-

ever, in modeling the interaction of the Cr spin with the

thermal lattice vibrations, the strain is time periodic. The

resulting HSL is therefore a dynamical Hamiltonian requir-

ing the application of time-dependent perturbation theory,

specifically Fermi's rule.

We are interested in lattice modes that are on "speak-

ing terms" with the spins, that is, vibrating at frequencies

that correspond to spin transitions. Fermi's rule is used

to calculate the transition probability rate, wij, for spin

transitions from level i to level j due to spin-lattice in-

teraction. Since ruby is vibrationally anisotropic, an in-

tegration over all possible phonon directions is performed.

The three phonon polarizations (one longitudinal and two

transverse) and the phonon density of states are also ac-

counted for. Applying Fermi's rule,

2
p=l

where [@i) is the state vector for level i as determined

from Eq. (4), Ink,p) is the nth phonon occupation state for
a phonon with wavevector k and polarization p, p(w) =

ON/Ow is the density of phonon states, as a function of fre-

quency, and d_ is an infinitesimal solid angle. In Eq. (14),

the perturbing Hamiltonian HSL changes the quantum

state from that of a spin in state i and n phonons in state

k, p to that of a spin in state j and n + 1 phonons in state

k,p. This corresponds to the creation of a phonon when

a spin drops from a higher energy state to a lower energy
state.

From [18], the density of states for each polarization

in a periodic solid is

k 2 dk

= v2%-- (15)

where V is the crystal volume. Making the Debye approx-

imation in which the velocity of sound v is a constant for

each polarization type, the dispersion relation is simply

w = vk. Equation (15) then becomes

y0) 2

p(w)- 2_r2v3 (16)

The Debye temperature of sapphire is 980 K [19], which
corresponds to a frequency of _ 2 × 1013 Hz, so the Debye

approximation is assumed to be valid for the one-phonon

relaxation process. Anharmonic crystal interactions and

multiple phonon processes are neglected.

Consider now the matrix element in Eq. (14). Substi-

tuting Eqs. (6) and (7) for HSL in Eq. (14), and separating

spin and phonon operators, one obtains

[HsL[ +1)= ( h\ ]

<nk,,la+ 1)e""X k,p -- a-k,p [ nk,p "4-

rnnst

(17)

where m, n, s, t = z, y, z. Applying Eqs. (11) and (12), the

phonon matrix element becomes

(14) (nk,p[ + 1)=- nx/_, p+l (18)ak, p -- a-k,, [ rtk,p -["
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For a large number of spins, n_,p may be replaced by the
average phonon occupation number as given by a Bose-

Einstein distribution of phonons (spin-one quasi-particles)

at the lattice temperature T,

1
/ \ (19)tnk,p)avg - h_

e kT -- 1

Substituting Eqs. (16) through (19) into Eq. (14), one ob-
tains

3

O_iJ : -hw
°'r2ec'" 1 - e kT x p=l

X (ep,sk, +ep,tk,) 2 1 } aa (2o1
k,p

where @i and @j have been denoted by i and j, pc is the

crystal density, and v_,p is the phonon velocity for mode

k,p. Equation (20)is Eq. (11)in [4].

In order to simplify Eq. (20), it is convenient to use

Voigt notation and to make some new variable definitions.
Define the direction cosines of the wavevector k as follows:

ki

ii=_-, i=x,y,z (21)

Writing G in Voigt notation, the summation over m, n, s, t

in Eq. (20) may be written as

mnsl

6

u,v=l

where S_ and Lp,, are defined as follows:

s_,= s.s.

s_= s.s.

s_= s,s. + &s.

s_ = s_s, + s,s_

s_ : s.s, + s,s,

(23)

and

Lp,1 = 2ep,fl,

Lp,3 = 2ep,zlz

Lp,s = 2 (ep,fl= + ep,=lz)

Lp,_ = 2ep,yly

Lp,4 = 2 (ep,ylz q- ep,zly)

Lp,6 : 2 (ep,zly -t- ep,yl= )

(24)

Using the dispersion relation w = 2_rf = kVk,p, where f is

the frequency of the spin transition between levels i and

j, and substituting Eqs. (21) through (24) into Eq. (20)

yields

wij = 2-_ch l_e kT " =

6 _ 1x _c.o<ils_lJ>L_,o
u,v=l Vk,p

dfl (25)

Defining

A.,,,=_ G..L.,. (26)
v=l

the modulus-squared quantity in Eq. (25) can be written

a_

6 2

U,V----1

6

Z Ap,qAp,,<i S_ j><i (_)
q,r=l

Substituting Eq. (27) into Eq. (25) and interchanging the

integral and the sum over polarization with the sum over

q and r, Eq. (25) becomes
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_r 2 f3 6

wij = 2,oh l_ e-k_ ,_=I_ B,_<i l S_lj><i l _r [ jl"

(281

where

3

Bq,. = y_ Ap,,Ap,r _ dfl (29)
_r p=l

Equation (29) is evaluated by a numerical integration over

4r steradians. Specifically,

f { }dfl = a0[s_a0['{ }sin0 dO de (30)

where the double integral is evaluated as a double sum.

Numerical experimentation shows that the double sum

converges for a summation step of A0 ----A¢ = 5 deg.

The density of sapphire is 4.0 gm/cm 3 [20]. For G and

f specified in units of GHz, vk,p in units of 105 cm/sec, and

Sg dimensionless, the constant in front of Eq. (28) becomes
8.2 x 10 -7 and wij has the units of sec -1.

In order to evaluate Eqs. (24) and (29), one needs
the phonon velocity and polarization vector for the three

phonon polarizations for each wavevector direction in the

4_r steradians. These are the quantities of interest in the

so-called Christoffel equations [21], which describe elastic

wave propagation in an anisotropic elastic medium. The

equations are a coupled set of three equations of motion

for volume elements of the crystal; Kittel [18] discusses the
case of cubic symmetry.

Wachtman et al. [22] gives the appropriate equations
for single-crystal AlsO3, which has trigonal symmetry.

The elastic constants, cq, (Voigt notation) are defined by

6

O"i : _._ Cij ej

j=l

(31)

where a is the stress tensor and e is the strain tensor. Val-

ues for the six independent elements of cij are determined

at room temperature by a resonance method discussed in

[22].

For the coordinate system of Fig. l, the equations of

motion for an elastic wave with frequency w = k • v may
be written as

B Ay = pcV s Ay

F Az Az

(32)

where Az, Ay, Az are the material displacements which

taken together specify the polarization vector. The matrix

elements A, B, C and F, G, H are functions of the cij and
the wavevector direction cosines:

A

B =

C=

F =

G=

H=

ell Is -F 1 (ell _ e12) m s + e44n2 .._ 2cl4mn

1 (Cll _ c12) is + CllmS + c44n2 _ 2c14mn

c44(i s+m s) +c33n s

C14 (l s -- m s) + (c13 + c44) mn

2c141m + (C13 + C44) In

1 (ell ..[_ C12) lm + 2cl41n

(33)

where l = sin0cos¢, m = sin0sin¢, and n = cos0. For

each wavevector direction in Eq. (30), Eq. (32) is solved

for the phonon velocity and polarization, as given by the

eigenvalues and eigenvectors, respectively, of the matrix in

Eq. (32).

The Bqr quantities defined in Eq. (29) need only be
calculated once for each Cr site; the resulting values are

stored in computer memory. For Cr site number 1 (i.e.,

for G given by Eq. 9) the matrix B has the form

B =

Bll B12 B13 B14 BlS B16

Bls Bll B13 -B14 -B15 -B16

B13 B13 B33 0 0 0

B14 -BI4 0 B44 0 -B15

B15 -B15 0 0 B44 B14

B16 -B16 0 -B15 B14 B66

(34)

where the independent components have the following val-

ues:
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Bll - 32.2 Bls = -0.0030

B12 = -13.9 /333 = 36.6

BI3 = -18.3 /344 = 11.7

B14 = -3.67 B66 = 23.1

Bls = -14.04

(35)

d----_- wjinj(t)-wqni(l , i-- 1,...,4 (37)
j=l

where ni(t) is the instantaneous spin population of level i.
Conservation of the number of spins requires that

For Cr site number 2 the Bqr have the same magnitude,

but B15 and B16 have opposite signs. For the Bqr given

above, wq is calculated from Eq. (28) for each field inten-
sity, angle, transition, and temperature of interest.

Finally, consider the frequency and temperature de-

pendence of wij. From Eq. (28), the temperature depen-

dence is determined by the factor (1 - e--hl/kT) -1, for
which

/1. , (36)

Thus, for hf/kT << 1, wij is proportional to tempera-

ture, or, since the relaxation time T1 is --, w_ 1 , T1 "_ T -1.

A relaxation time inversely proportional to physical tem-
perature is a characteristic of the one-phonon relaxation

process, and has been observed for many paramagnetic

materials (including ruby) at liquid He temperatures [13].
The multiple-phonon relaxation processes exhibit relax-

ation times with significantly different dependence on tem-

perature, e.g., T1 o¢ T -7 (Raman process).

The frequency dependence of 03ij is contained in the
factor fa. (1 - e-hylkT) -1 and also in the mixing of spin
states.

Also note the strong dependence of 03ij on the veloc-

ity of sound. From Eqs. (28) and (29), 03ij "" v -s, so if

long relaxation times are desired, a hard material such as

sapphire is beneficial.

IV. Spin-Lattice Relaxation Times

The spin-lattice relaxation times, T1, are of interest

primarily because they are more accessible to measure-
ment than the transition probability rates. The relaxation

times are calculated by solving a set of time-dependent

rate equations for the spin populations. The rate equa-

tions, not including pump-induced transition rates, for the

ith level are [2, 4]

nl +n_ + n3+n4 = N (38)

where N, the total number of spins, is constant. Equa-

tions (37) and (38) reduce to a system of three equations,

where

n = Aft + b (39)

In11n= n2

n3

(40)

/_= |0342" (41)

0343 '

and

A =

All 0321 -- 0341 0331 -- 0341 1

I

J0312 -- 0342 A22 0332 -- 0342

0313 -- 0343 0")23 -- 0343 A33

(42)

where

All= - (0312 + 0313 -_- 0314 "_- 0341)

A22 = - (0321 + w23 "q-0324Jr 0342)

Aa3 = - (w31 + w32 + 0334 + 0343)

(43)
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Note that

w.ii = e wij (44)

where f = fi - fJ, as can be shown by manipulation of

Eq. (28).

Experimentally, the usual procedure for measuring T1

is to saturate a pair of levels with a strong microwave pulse
and observe the recovery of the same or another pair of

levels as the spins return to thermal equilibrium. For non-

interacting spins (i.e., no cross-relaxation) the recovery is

exponential, with Ti being identified as the time constant
of the decay. A theoretical 7'1 is determined by solving

Eq. (39) for an appropriate set of initial conditions. For

example, if levels one and two are saturated, then the ini-
tial conditions would be

a(t = 0) =

½ (N1 + N2)

½ (N1 + N2)

N3

(45)

where Ni is the thermal equilibrium spin population of

level i. The Ni satisfy a Boltzmann distribution,

Ni = e- (46)
gi

and also satisfy the conservation relation,

NI+_+_+_=N (47)

The solution to Eq. (39) is straightforward and may be

found in [23]:

fi(t) = aisle xlt + a262e x2t + ot3_3e x3t - A-lb (48)

where

[ol]_2

_3

= (_h _'2 63) -x" (_(0)+ A-Xb) (49)

and the ci are the eigenvectors of A (written as column

vectors) with the corresponding eigenvalues hi. The nor-
malized population difference between levels i and j is

ni - nj _ 1 + Ale -t/T_ -k-A2e -t/T_ + Aae -t/T3 (50)
Ni- Nj

where the T/ = -1/_i are the relaxation times, and the

Ai are determined from the ai and 6i. Thus, the recovery

of each pair of levels is characterized by three relaxation

times. In fact, the same three relaxation times characterize

the recovery between any pair of levels for a given initial

condition; however, the amplitudes, Ai, will vary for the
different transitions.

Donoho [4] plots Ti and Ai as a function of 0 and
transition for a frequency f = 9.3 GHz and a physical

temperature T = 4.2 K. In [4] there are also several plots

of 7'1 versus frequency (1-10 GHz) for particular angles

and transitions. Generally it was found that only one or

two relaxation times were important, usually the longest

two. These calculations were repeated as a check on the

computer code. Table 1 compares two sets of T/ and Ai

values from [4] with the author's calculations for an angle

0 = 54.7 deg. The T/ from the author's calculations are

approximately a factor of one-half less than Donoho's re-

sults, which leads to better agreement between theory and

experiment at 10 GHz [5, 24]. More troublesome, however,
is the lack of consistent agreement among the Ai values.

Although the cause of the disagreement is unknown, the

disagreement is not considered significant in light of the

consistent relaxation times computed.

Previous comparisons of experimental and theoreti-

cal values of 7"1 have generally not shown good agreement

even for very dilute ruby (,_ 0.01 percent) [5]. For exam-
ple, the relaxation times may be several times shorter than

the theory predicts and may not have the angular depen-

dence displayed by Donoho's results. However, Standley

and Vaughan [24] made measurements on ruby grown by
the so-called vapor phase modification to the flame-fusion

technique, and found considerably better agreement with

Donoho's theory for concentrations up to 0.2 percent. It

is thus likely that the source of the disagreement for the

rubies not grown by the vapor phase method is depen-

dent on the crystal growth process. If the Cr ions are

not uniformly distributed, then cross-relaxation between

exchange-coupled pairs or clusters is a possibility. Crystal

imperfections and other magnetic impurities (e.g., Fe 3+)

could similarly affect the relaxation behavior of the Cr

ions. Standley and Vaughan [5] discuss these possibili-

ties further. To account for these effects, Donoho's theory
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would most likely have to be modified to include spin-spin
interactions. Previous attempts to incorporate spin-spin

effects have not been very successful [30].

Professor Sheldon Shultz at the University of Cali-

fornia, San Diego is presently under contract with JPL

to perform 711 measurements at 9 GHz and 35 GHz on and

our Czochralski-grown ruby. These measurements are be-

ing made to determine the optimum Cr concentration in

a 32-GHz traveling wave maser (TWM) as a function of A' =
temperature, and also to better understand the relaxation

mechanism in ruby. Previous measurements [2] have indi-

cated a strong dependence of inversion ratio and gain on

Cr concentration, particularly at very low temperatures A +

(e.g., _ 2 K). This effect is a result of spin-spin interac-

tions, and cannot be explained by Donoho's theory.

V. Calculation of Gain, Pump Power,

and Noise Temperature for Ruby

Gain, pump power requirements, and noise temper-

ature are important considerations in maser design and

operation. In principle, each of these quantities can be

predicted given an accurate knowledge of the spin-lattice

transition probability rates, wij.

A. Inversion Ratio

The gain in the ruby is directly proportional to the

population difference of the inverted levels. The steady-

state populations of the levels can be determined as a func-

tion of pump power from the steady-state rate equations:

4

_'li = 0 "- E [_djiBj -- _ijni -_- Wij (nj -- ni)]

j=l

i= 1, 2, 3, 4 (51)

where Wq is the stimulated transition rate due to RF

pumping given by Eq. (5). Applying conservation of spins,

Eq. (51) may be reduced to a set of three equations,

A'fi = b (52)

where fi is given by Eq. (40),

I _41 1

/_= -g w42 + W24 (53)

w43 + 14134

(_2- _4) -(_2+2_4) -_4

(_3-- _4) -W34 -(_3+2W34)

(54)

where A is given by Eq. (42). The population vector h

is determined by matrix inversion. Note that the Wij
terms present in b and A' are restricted to W13, W24, W12,

and W34, corresponding to the transitions that would be

pumped in the double pumping schemes shown in Fig. 3.

(The choice of these pumping schemes is discussed in [9].)

It is assumed that the signal transition is far from sat-

uration, so Wsignal can be neglected compared to Wpump

and ¢vij. (Actually, Wsignal could be > wij for some tran-

sitions, but it is assumed this has negligible effect on the

populations.)

A convenient measure of the inverted population dif-

ference is the inversion ratio, defined for the signal transi-

tion occurring between levels i and j(i > j) as

I-- ni-nj (55)
Ni - Ni

where ni and nj are determined from Eq. (52). Plots of I

versus Wpump may be made with temperature, frequency,
angle, etc. as parameters.

Figure 4 shows I versus Wpump for f = 32 GHz,

0 = 54.7 deg, and for a range of temperatures. Figure 5 is

a similar family of curves for 0 = 90 deg. Note the oppo-

site dependence of I on temperature for the two pumping

schemes when the pumping rates are near saturation. This

is a result of the settling of spins into the lowest energy

state as hf/kT increases.
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The inversion ratio corresponding to saturation of the
pumped transitions can easily be read off of plots of I ver-

sus Wpump. However, if pump saturation is expected, then
the saturation inversion ratio can be determined directly

from a single steady-state rate equation. A simple alge-

braic equation then results for I.

Figure 6 shows I versus temperature assuming pump

saturation for the 8.5-GHz maser pumping scheme [1].

Siegman [2] defines the "optimum" and "equal" inversion

ratios by rewriting the expression for I in terms of a

pseudo-relaxation time,

T_t = (_it + _t_)-_ (56)

and then either optimizing I with respect to the Tit, or

simply setting all the Tit equal and calculating the result-
ing I. (Siegman does not discuss the theory of spin-lattice

relaxation quantitatively, and therefore has to make as-

sumptions about the wit.) Note that in Fig. 6 the inversion
ratio for saturation is close to the optimum value possible

for this pumping scheme• Figure 6 will be compared with

measurements being performed at JPL.

Figures 7 and 8 show predicted values I versus tem-

perature for two pumping schemes for a 32-GHz maser.

Note that the assumption of pump saturation may not be

correct for the higher pump frequencies.

Many measurements of inversion ratio have been per-

formed by R. Clauss et hi. [25, 26] at JPL. Table 2 com-

pares some of these measured values with predictions from

the spin-lattice relaxation theory• In most cases, it can be
assumed that the pump transitions were saturated• The

agreement between measurement and theory is moderate,

with predicted values often being 30 percent or more dif-
ferent from the measured values•

Inversion ratio measurements have also been per-

formed by Moore and Neff [27] at 0 = 54.7 deg. Their
results are shown in Fig. 9 with the theoretical value over-

laced. The agreement between specific values varies, but

the trend of decreasing inversion ratio with increasing sig-

nal frequency is predicted by the theory• Note the large
scatter in Moore and Neff's measured values of I at fre-

quencies below 20 GHz.

The source of disagreement between the measured and

predicted values of I is most likely due to spin-spin inter-

actions, as discussed in Section IV.

B. Gain of Ruby

Expressions for maser gain are given in [2]• Consider-

ing only first-order temperature-dependent terms, the gain
in dB is

GdB OC insigna I 2• O'signa I (57)

where Ansigna I = /iNsignal and where ANsigna I is deter-
mined from the Boltzmann relations. Figure 10 shows GdB

(normalized to GdB at 4.2 K) versus temperature for the

JPL X-band maser pumping scheme. Since hf/kT << 1

(approximately) even at T = 1.5 K, little departure from

the expected T -1 behavior (dashed line) is seen [2].

For f = 32 GHz, hf/kT _ 1 for T = 1.5 K, so some
deviation of GdB from a T -1 dependence is expected. Fig-

ure 11 shows the thermal equilibrium population difference

(normalized to the population difference at 4.2 K) for the

maser configurations shown in Figs. 3(a) and 3(b). Note

the strong departure from the T-1 curve for the pumping

schemes employing the 2-3 signal transition. However, the

temperature dependence of GdB is proportional to I. AN.

Figure 7 displays an inversion ratio that increases as T

decreases, so the product I • AN will not deviate greatly

from a T -1 dependence•

Figure 12 shows normalized gain as a function of tem-

perature for the two pumping scenarios corresponding to

Figs. 7 and 8. Both curves are normalized to the gain at

4.2 K for the scenario employing the 2-3 signal transition,

and both assume pump saturation. The plots indicate that

the 90-deg scheme (1-2 signal transition) will yield greater

ruby gain for all temperatures in the range of 1.5 K to
4.2 K.

C. Pump Power

After the pump transition rate Wit is determined for

a given inversion ratio, the corresponding pump power can

be calculated from Wij. To simplify the expression for Wij

as given by Eq. (5), Siegman [2] defines the vector

--,t= ( il J t) (hS)

where Yit is a measure of the strength of the i, j transition.

Equation (5) then becomes

-I'Wit = lq"g(f) ]HI* •cri, (59)
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The maximum value of a/2j occurs when H1 and S are

parallel. Siegman further defines

The magnetic field of the TEl0 rectangular waveguide

mode is [29]

--ij = + 9+ (60)

The vector components aij, flit, 7ij are determined__from
the spin Hamiltonian. The optimum polarization of HI is

then easily found by maximizing H_ • a--ij.

Rather than outlining a general procedure for cal-

culating pump power, a specific calculation for a single
channel of the 32-GHz reflected wave maser (RWM) [28]

is given. The RWM consists of 8 channels of ruby-filled

waveguide in which both the signal and pump power prop-

agate in the TEl0 mode. (Note that at the pump frequency
the waveguide can support higher-order modes; here it is

assumed that none of these is excited.)

The geometry of a single waveguide channel is shown

in Fig. 13. Note that the z axis is defined to be parallel to
the dc field B, unlike Fig. 1 in which the z axis is parallel

to the crystal c axis. Thus, the a--/j vectors computed from

the spin Hamiltonian given by Eq. (1) must be rotated

through an angle 8 = 54.7 deg to apply to Fig. 13.

The RWM employs the push-pull pumping scheme

(Fig. 3b) at the double-pump angle 0 = 54.7 deg. The

pump transitions are the 1-3 and 2-4 at 66 GHz, and the

signal transition is the 2-3 at 32 GHz. The _ij components

are the following:

a13 = -0.291 fl13 = 0.303 713 =-0.198

a24 = -0.257 f_24 = 0.236 724 = -0.198

a23 = -1.96 _23 = 1.96 723 = 0.085

(61)

Concentrating on the 1-3 pump transition, note that

)Ht = _ :_'a \_a] sin _-_)

x ej(_+_t) (63)

where E0 is the electric-field amplitude, Zd = _ is the

dielectric impedance, Ad = Afreespace/V/_'_ is the dielectric

wavelength, and _ is the mode propagation constant. For
ruby er _ 10, so Zd _-. 1201"_ and Ad _ 0.0566 in. The

RWM guide dimensions are a = 0.10 in. and b = 0.05 in.

[28]. From Eq. (63), HI is circularly polarized for

A..._d

tan ry _ _,_ (64)

a "]11- ( _''12
V

which has the solutions y _ 0.1a and y _ 0.9a. Forming

the product H1 * • Y13, it is found that the pump RF field

is most strongly coupled to the spins at y _, 0.1a.

Neglecting losses and ruby absorption, the time-

average power flow down the waveguide is [29]

Pavg- ZTE2 / IH,I_ dA
CF088
sectmn

(65)

where Ht is the transverse component of HI and

ZTE --
Zd

(66)

_13 (--5:-I-j_-- 2^ )-5-

where a13 _ 0.30.

(62) Evaluating Eq. (65) and solving for E0, one obtains

E°=(4"P_'ZTE) t/2a.b (67)
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Assuming Pavg = 50 mW per channel [28], an electric-field
amplitude Eo = 2.78 x 10 a V/m is obtained in the guide.

Substituting Eq. (62) into Eq. (59) and noting that

HI has no z component,

pumping scheme used in the RWM, cOfplOf, _ 2. A typi-
cal broadened linewidth for the RWM is A f, = 400 MHz.

Evaluating Eq. (70) for the above values, and noting

that 7 = 2.2 x 105 m/Coulomb,

(68)
780 sec -1 unbroadenedW13 _. (73)
90 sec-1 broadened

Since Ha varies as a function of y, an average value of the
modulus-squared quantity in Eq. (68) is required. Evalu-

ating the average, one obtains

f0°l ' 1(E0 ' (69)

From Fig. 4, the corresponding inversion ratios at T =
4.5 K are

1.3 unbroadened
I_ (74)

0.8 broadened

Equation (68) averaged over the waveguide cross section
be comes

.¢..

These values compare favorably with the corresponding

experimental values. Moore and Neff [27] found the maxi-

mum inversion ratio to be I = 1.1 to 1.2. (The saturation

value of I in Fig. 4 is I ,_ 1.5). Shell and Neff [28] de-
termined the inversion ratio of the RWM broadened to

400 MHz to be I _ 0.7 to 0.8.

To evaluate Eq. (70), one needs to know the line

shape function g(f). For an unbroadened Lorentzian line
of width AlL , the line shape at the pump frequency is [2]

2

g(fp) _ _rA---_L (71)

D. Noise Temperature

Amplifier noise temperature T_ is plotted versus phys-
ical temperature T with the resistive loss quantity fl as a

parameter for the two 32-GHz pumping schemes shown in

Figs. 7 and 8. Following Stelzreid [12], the amplifier noise

power is

where AlL _, 60 MHz for ruby.

For a line broadened by a stagger-tuned dc field and

assuming that the pump sweep rate >> the pump level

relaxation time, the line shape is approximately [2]

1

g(f) =

0

<f<

elsewhere

(72)

where Alp and A f, are the pump and signal linewidths,

and Ofp/Ofo is evaluated by differencing or by applica-

tion of the Hellman-Feynman theorem [7]. For the 32-GHz

Pn,amp = e kT; B (75)

where G is the amplifier gain and B is the bandwidth. To

make this definition valid for hf/kT_ > 1, define

n_Z
, k (76)

T_- e_._ 1

where Ta is defined by the black-body noise power

hfB
Pn,amp -- e h (77)

e _- -1
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Noise in masers is discussed thoroughly in [2]. The

two primary noise mechanisms are spontaneous emission

of photons by the ruby spins and conductor losses in the

microwave circuitry. The noise power of a TWM is [2]

_" P.(-T.,)+ --Pn,amp----(G- 1) a0 :am s0 P.(T))
(:Itm -- O¢0

(7s)

where

hfB
Pn(To)- h_L_ (79)

ekTo -- 1

and

e -- e 2(am-t_°)L (80)

where a,,_ and a0 are the ruby gain and forward loss coef-

ficients, respectively, of the TWM, and L is the structure

length. Tm= IT, I is the magnitude of the spin tempera-

ture defined by the ratio of the inverted spin populations:

ni - h-Li-
-- =e kT_ i > j (81)
n./

For G >> 1, Eqs. (75), (78), and (79) yield a noise

temperature

:]+ (s2)
T_'- k(1-_) 1-e kT,_ ekT--1

where _ = a0/a,n. Figures 14 and 15 show T" versus T
with/3 as a parameter and assuming pump level satura-

tion. The figures display a slightly lower T_ at a given

physical temperature and _ for the 90-deg orientation.
The difference arises from the lower Tm for the 90-deg

pumping scheme. Note that at T = 1.5 K the effect of

is diminished. Estimates of/3 for a 32-GHz TWM are not

available at this time. For the RWM, Shell and Neff [28]
estimate fl _ 0.1.

Vl. Conclusions

This article shows that by accounting for the rate of

spin relaxation from higher energy levels, predictions of

many basic maser parameters such as gain, pump power,
and noise temperature can be made. For ruby, the dom-

inant source of spin relaxation is interaction of the Cr 3+

ions with thermal vibrations of the AI2Oa lattice. Based
on measurements found in the literature which character-

ize the strength of the coupling between the spins and the

lattice, quantitative estimates of the spin relaxation rates
have been made.

Relaxation time measurements are presently under-

way at 9 GHz and 35 GHz as a check of the theory and
to determine the best orientations and Cr concentration

of the ruby crystal for a 32-GHz maser. Previous relax-

ation time measurements have shown varying degrees of

agreement with the theory, perhaps due to the presence

of impurities or due to clustering of Cr ions. To account

for impurities or clustering, the theory would have to be

modified to account for spin-spin interactions.

Comparison of predicted inversion ratios with mea-

sured values also shows varying degrees of agreement, but

the agreement is generally good. More detailed experimen-

tal studies of inversion ratio and gain for various levels of

pump power and as a function of physical temperature for

the 54.7-deg and 90-deg ruby orientations are necessary at
32 GHz.

The theory predicts that at 32 GHz and assuming

pump saturation, the gain for the 90-deg orientation (1-

2 signal transition) should be nearly 50 percent higher in

dB than for the 54.7-deg orientation (2-3 signal transition).

The theory also predicts a slightly lower noise temperature

for the 90-deg orientation. Although specific calculations

have not been performed, it is expected that the 90-deg

orientation will require _ 50 percent greater pump power

than the 54.7-deg orientation.

The usefulness of the present theory remains to be

seen. It may be found that spin-spin interactions cannot

be neglected even for the relatively dilute ruby used in

maser amplifiers. The theory is, however, a significant step

towards a more complete understanding of ruby masers.
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Table 1. Comparison of Donoho's [4] calculated values

of Ai and Ti with those of the author for 0 -- 54.7 deg,

f = 9.3 GHz, and T = 4.2 K

= 54.7 deg, transition = 2-3

Donoho's Author's

Calculation [4] Calculation

T1 0.38 0.20

T2 0.22 0.11

T3 0.13 0.07

A1 0.99 1.00

A2 0 0

A3 0 0

0 = 54.7 deg, transition = 3-4

Donoho's Author's

Calculation [4] Calculation

T1 0.97 0.51

T2 0.60 0.30

T3 0.22 0.11

A1 0.50 0.26

A2 0.41 0.49

A3 0.09 0.25
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Table 2. Comparison of measured inversion ratio with theoretical

predictions for 0.05 percent Cr ruby at 4.5 K

Transition(s) and

Frequency, GHz

O, deg H0, kG Signal Pump /opt imeas /theory

54.7 5.72 2-3 1-3, 2-4 3.6 2.8 a 2.2

14.4 32.9

54.7 5.56 2-3 1-3, 2-4 3.6 3.0 a'b 2.3 b

13.9 32.0

54.7 6.78 2-3 1-3, 2-4 3.4 3.3 2.0

17.2 28.0

54.7 3.7 2-3 1-3, 2-4 4.2 2.5 3.0

8.5 21.9

54.7 6.6 2-3 1-3, 2-4 3.4 2.5 2.0

16.8 37.3

90 5.0 1-2 1-4 4.1 2.5 3.6

8.5 43.5

90 5.0 1-2 1-3, 3-4 4.1 3.2 3.6

8.5 24.2, 19.3

90 6.8 1-2 1-3, 3-4 3.3 3.0 2.7

13.6 33.9, 24.6

90 7.1 1-2 1-3, 3-4 3.2 2.9 b 2.4 b

14.2 35.2, 25.2

90 8.0 1-2 1-4 3.1 --0.1 c 2.5

16.8 68.3

90 8.0 1-2 1-3, 3-4 3.1 2.9 2.4

16.8 40.3, 28.0

a 0.075 percent Cr

bl.8K

c Pump not saturated
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Fig. 3. Double-pumping schemes being considered for
ruby for a 32-GHz maser. The downward arrow is the
32-GHz (signal) transition.
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Fig. 7. I versus T assuming saturation for 0 = 54.7 deg,
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Fig. g. Measured and theoretical values of I versus sig-

nal frequency for ruby, $ = 54.7 deg, T = 4.5 K.
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Fig. 10. The normalized gain versus T (assuming sat-

uration) for 0 = 90 deg, H = 5 kG, and signal = 1-2
transition = 8.5 GHz.
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Fig. 11. Thermal equilibrium population difference for
two 32-GHz pumping scenarios (normalized to popula-
tion difference of the 54.7-deg scenario at 4.2 K).
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Fig. 12. GdB versus T for 54.7-deg and 90-deg pumping
schemes (assuming saturation).
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Fig. 13. Geometry of a single channel of ruby-filled
waveguide for 32-GHz RWM.
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Fig. 14. T_ versus temperature for 32-GHz ruby maser.

0 = 54.735 deg, signal = 2-3 transition = 32 GHz.
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